
Journal of Sound and Vibration (1997) 201(2), 272–280

DECOUPLING LONGITUDINAL AND TRANSVERSE VIBRATIONS OF A
CYLINDRICAL BEAM IN TIME AND FREQUENCY DOMAINS

R. S, F. O, C. V K  J. L

College of Engineering, Michigan Technological University, Houghton, MI 49931, U.S.A.

(Received 1 July 1996, and in final form 23 July 1996)

1. 

In the vibration analysis of structural systems under a combination of longitudinal and
transverse loads, it often becomes necessary to study the dynamic behavior of longitudinal
vibration and transverse vibration of the structure separately. This requires decoupling the
longitudinal vibration and transverse vibration from each other when the two are present
in the data. Strictly speaking, neither pure transverse nor pure longitudinal vibration exists
in a practical case. They are almost always combined with each other or some other
components, such as torsion and shearing, depending on the loading conditions and
the mechanical and geometrical properties of the structure. By decoupling these two
types of vibrations from the original measurements of the structure, it helps us to
understand the contribution and significance of each component to the total response of
the structure. Also, decoupling makes it possible to evaluate the dynamic behavior of
longitudinal and transverse vibrations of the structure separately. Considering that
vibration analysis can be conducted in both time domain and frequency domain,
decoupling the two components in the two domains can be very useful in the dynamic
analysis of the structure.

In this paper, by using strain gage techniques, an approach to decouple the longitudinal
vibration and transverse vibration of a cylindrical beam in both time and frequency
domains is discussed. The relevant equations are developed and applied to a case of a
cylindrical beam excited by an eccentric axial impact load.

2.   

In the case of static loading, Tuttle [1] proposed that, using three uniaxial strain gages
(A, B and C) mounted parallel to the axis of a cylindrical column and 120° apart (Figure 1),
the axial load, P, can be determined for the cylindrical beam by using equation (1):

P=(AE/3)(oA + oB + oC), (1)

where P=axial load on the beam, N; A=cross-sectional area of the beam, m2;
E=Young’s modulus of the material, N/m2; oA, oB, and oC are strain levels recorded
individually at the same load level from strain gages A, B, and C, respectively.

From equation (1), the axial strain, ol , can be expressed as

ol = 1
3(oA + oB + oC). (2)

Equation (2) indicates that the axial strain at the cross-section of measurement point is
the average of the readings from the three strain gages. Assuming that the measured strains
are composed of two components, namely, axial strain and bending strains, then

ei = el + eti , (3)
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where oi is the measured strain from gage i=A, B, C; ol is the axial strain at measurement
point; oti is the bending strain at measurement point i=A, B, C. Hence, once the axial
strain, ol , is obtained from the measurements by using equation (2), the bending strain,
oti , can be calculated accordingly by using equation (3) as

oti = oi − ol . (4)

Similarly, in the case of dynamic loading, the same approach can be directly applied to
time domain analysis. The only difference is that the strains in the dynamic case are
functions of time.

For a cylindrical beam in elastic stability and subjected to longitudinal and transverse
vibrations, the total strain signal at the measured site can be expressed as

oi (t)= ol (t)+ oti (t), ol (t)= 1
3[oA(t)+ oB(t)+ oC(t)], oti (t)= oi (t)− ol (t), (5–7)

where oi (t) is the measured strain signal from gage i=A, B, C; ol (t) is the longitudinal
strain at measurement site; oti (t) is the transverse strain at measurement site i=A, B, C;
oA(t), oB(t) and oC(t), are strain signals recorded simultaneously from strain gages A, B and
C, respectively. Therefore, once the longitudinal vibration ol (t), is obtained from the
measurements by using equation (6), the component of transverse vibration, oti (t), can be
calculated accordingly by using equation (7). Then, the longitudinal and transverse
vibrations of a cylindrical beam can be decoupled in the time domain by using equations
(6) and (7).

In the frequency domain, considering that the Fourier transform is a linear operation
[2], and by taking the Fourier transform of both sides of equation (6), one obtains

F[ol (t)]= 1
3F[oA(t)+ oB(t)+ oC(t)]= 1

3{F[oA(t)]+F[oB(t)]+F[oC(t)]}. (8)

Therefore,

ol (v)= 1
3[oA(v)+ oB(v)+ oC(v)], (9)

Figure 1. Layout of the strain gages on a cylindrical beam [1]. M is the bending moment; g is the angle between
the neutral axis and the nearest gage; Positive axial load P acts perpendicular to and out from the figure.
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where F is the Fourier transform operator; ol (v) is the linear spectrum of the longitudinal
strain at measurement site; oA(v), oB(v), and oC(v) are the linear spectra of measured strain
signal at gages A, B, and C, respectively.

Let HA(v), HB(v) and HC(v) be the frequency response function (FRF) between the
strain oA(t), oB(t) and oC(t) and the input forces, f(t), at the measurement site, respectively.
Then from the definition of FRF [5], one has

HA(v)= oA(v)/F(v), HB(v)= oB(v)/F(v), HC(v)= oC(v)/F(v). (10)

Then,

oA(v)=HA(v)F(v), oB(v)=HB(v)F(v), oC(v)=HC(v)F(v).

Then, from equation (10),

ol (v)= 1
3[HA(v)+HB(v)+HC(v)]F(v) (11)

and

Hl (v)= ol (v)/F(v)= 1
3[HA(v)+HB(v)+HC(v)], (12)

where Hl (v) is the FRF between the longitudinal strain vibration, ol (t), and the input force,
f(t); F(v)=F[f(t)] is the linear spectrum of the input force, f(t).

Similarly, taking the Fourier transform of both sides of equation (6) gives

F[ot (t)]=F[oi (t)+ ol (t)]=F[oi (t)]+F[ol (t)].

Then,

oti (v)= oi (v)− ol (v), Hti (v)= oti (v)/F(v)=Hi (v)−Hl (v), (13, 14)

where oi (v) is the linear spectrum of measured strain signal from gage i=A, B, and C;
oti (v) is the linear spectrum of transverse strains at gage i=A, B, and C; Hi (v) is the FRF
measurement from gage i=A, B, and C; Hti (v) is the FRF of transverse strains at gage
i=A, B, and C.

By using equations (12) and (14), the FRF between the longitudinal and transverse
vibration of a cylindrical beam at the measurement site and the input force can be
decoupled from the FRF measurements at three strain gages.

3.        



In order to investigate the validity of the above approach, equation (12) and (14) were
applied to the vibration analysis of a long cylindrical steel beam under impact excitation
[3, 4]. One end of the beam was anchored in a concrete block and the other end was
tightened against another concrete block (Figure 2) by torquing to 27 N m. The geometric
and mechanical properties of the beam are shown in Table 1. In total, nine strain gages
of 350 V and 0·32 cm gage length were bonded at three locations longitudinally along the
beam. At each measurement site, three gages were mounted 120° apart (Figure 1). All gages
were bonded in place with a strain gage adhesive. At each location, the strain response
from each gage, oA, oB and oC, was captured individually at the same time. A system with
an internal quarter bridge was used to measure the strain signals from the instrumented
beam. Excitation (Figure 3) was applied to the beam longitudinally and eccentrically at
the end of the beam with an impact hammer. The strain time history and FRF at each
gage were measured simultaneously. All signals were recorded with a digital spectrum
analyzer.
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Figure 2. Sketch of experimental setup.

Figure 3. Impact force time history.

With this test set-up and excitation approach, the torsional vibration of the beam was
not excited. Obviously, due to the slenderness of the beam and the eccentricity of the
impact force, the transverse vibration is always excited and coupled with the longitudinal
vibration. Based on the FRF measurements from each gage, and using equations (12) and
(14), the FRF of longitudinal vibration at each measurement site and the FRF of
transverse vibration at each gage can be extracted from the data. Figures 4–6 show the
FRFs between the longitudinal vibration at each measurement site and the impact force,
decoupled from the FRF measurements by using equation (12). It is shown that, after
decoupling, most of the peaks in the original FRF are cancelled. However, in order to be
sure that the decoupled FRFs are longitudinal FRF, those cancelled peaks must be shown
to belong to the transverse vibration of the beam. For this purpose, the measured strain

T 1

Geometric and mechanical properties of the beam

length diameter Young’s modulus Moment of inertia Section area Mass density
(m) (m) (N/m2) (m4) (m2) (kg/m2)

1·76 0·014 20·34×1010 2·05×10−9 1·61×10−4 7·69×10−3
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Figure 4. Decoupled FRF of longitudinal vibration at site 1. (a) Gage 1A, (b) gage 1B, (c) gage 1C; . . . . . . . ,
before decoupling; ——, after decoupling.

Figure 5. Decoupled FRF of longitudinal vibration at site 2. (a) Gage 2A, (b) gage 2B, (c) gage 2C; . . . . . . . ,
before decoupling; ——, after decoupling.

T 2

Comparison of cancelled peaks with transverse frequencies

Mode no. 1 2 3 4 5 6 7 8 9

Cancelled peaks (Hz) 27·7 58·2 119·1 188·4 279·8 390·6 512·5 656·5 817·2
Transverse frequency (Hz) 27·2 63·4 119·3 188·4 277·9 389·3 510·5 656·4 816·6

FRF at gage 1A was digitized at each cancelled peak. Comparison (Table 2) between the
digitized results and the measured transverse frequencies [3] shows that all the cancelled
peaks belong to the transverse component. These results illustrated that, by using equation
(12), the FRF of longitudinal vibration can be decoupled from the measurements with a
high degree of precision.
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Figure 6. Decoupled FRF of longitudinal vibration at site 3. (a) Gage 3A, (b) gage 3B, (c) gage 3C; . . . . . . . ,
before decoupling; ——, after decoupling.

4.         

By using equation (6) and (7), the time histories of longitudinal and transverse vibration
of the beam at each measurement site can be separated from the measured signals at each
gage. Typical decoupled results (gage 1A at site 1) in the time domain are shown in
Figure 7. It is shown from the figure that the transverse vibration is more dominant than
the longitudinal vibration although the beam is excited longitudinally, which makes
physical sense, considering the fact that the longitudinal stiffness of the beam is much
larger than its transverse stiffness.

In order to verify whether the decoupling in the time domain works as well as it does
in the frequency domain, and to determine whether the decoupled signals in the time

Figure 7. Typical decoupled results in the time domain: . . . . . . . , meausred strain signal at gage 1A; ——,
decoupled longitudinal vibration at site 1; – . – ., decoupled transverse vibration at gage 1A.
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Figure 8. Comparison of calculated longitudinal FRFs with decoupled FRFs: (a) site 1, (b) site 2, (c) site 3;
——, calculated FRF based on time domain decoupling; . . . . . . . , decoupled FRF based on FRF measurements.

domain correspond to those decoupled in the frequency domain, a Fourier transform over
the decoupled time domain data was taken and the corresponding FRFs were calculated
and compared. The results should be consistent with the results obtained when the signals
are decoupled in the frequency domain. Figure 8 shows the comparison between the
calculated FRFs of longitudinal vibration, based on the data decoupled in the time domain
(equation (6)) at all three measurement sites, and the FRFs of longitudinal vibration
decoupled in the frequency domain (equation (12)) based on the FRF measurements at
each gage of all three sites. Figures 9–11 show the comparison between the calculated FRFs
of transverse vibration using the data decoupled in the time domain (equation (7)) and
the FRFs of transverse vibration decoupled in the frequency domain (equation (14)) using
the FRF measurements at each gage. The comparison shows a strong consistency between
the calculated FRFs and the decoupled FRFs, which implies that the time domain

Figure 9. Comparison of calculated transverse FRFs with decoupled FRFs: (a) gage 1A, (b) gage 1B, (c) gage
1C; ——, calculated FRF based on time domain decoupling; . . . . . . . , decoupled FRF based on FRF
measurements.
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Figure 10. Comparison of calculated transverse FRFs with decoupled FRFs: (a) gage 2A, (b) gage 2B, (c) gage
2C; ——, calculated FRF based on time domain decoupling; . . . . . . . , decoupled FRF based on FRF
measurements.

decoupling works as well as in the frequency domain. The trivial and insignificant
inconsistency between the calculated FRFs and the measured FRFs is mainly due to the
effect of the averaging process in the FRF measurements while the calculated FRF is based
only on one time history.

5. 

An effective method to decouple and extract both the longitudinal and the transverse
vibrations of a cylindrical beam from the measurements in the time and frequency domains
has been developed and presented in this paper. The approach and equations can be
applied to any beam structure with a circular cross-section subjected to combined
longitudinal and transverse loading. The decoupling provides a way to evaluate the

Figure 11. Comparison of calculated transverse FRFs with decoupled FRFs: (a) gage 3A, (b) gage 3B, (c) gage
3C; ——, calculated FRF based on time domain decoupling; . . . . . . . , decoupled FRF based on FRF
measurements.
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significance and contribution of the longitudinal and transverse components to the total
response of the beam structure. Due to the experimental set up and the layout of the strain
gages, the torsional component is not sensed by the gages, and therefore has no effect on
the decoupling results. It is worth noting that the quality of decoupling can be affected
by the alignment of strain gages, selection and installation of the gages, and the
instrumentation and data acquisition of the measurement system.
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